



FORTIS BC<sup>..</sup> Energy at work

Continuous Optimization for Commercial Buildings Program

# **Recommissioning Report**

| Version | Updated on    | Phase                                            |
|---------|---------------|--------------------------------------------------|
| 1       | July 17, 2022 | Investigation phase.<br>Draft for client review. |
|         |               |                                                  |
|         |               |                                                  |

Prepared for: School District 69 Ballenas Secondary School 135 Pym St Parksville, BC Project: BCH-07832 Prism Project: 2021300

Prepared by: Prism Engineering Ltd. #320 - 3605 Gilmore Way Burnaby, BC





saving you energy™





FORTIS BC<sup>\*</sup>
Energy at work

# TABLE OF CONTENTS

| 1.0   | INTRODUCTION                                               |    |
|-------|------------------------------------------------------------|----|
| 2.0   | PROJECT OVERVIEW                                           | 4  |
| 3.0   | SAVINGS SUMMARY                                            | 5  |
| 4.0   | BRIEF DESCRIPTION OF EXISTING SYSTEM                       | 6  |
| 4.1   | Facility Description                                       | 6  |
| 4.2   | Heating System                                             | 6  |
| 4.3   | Cooling System                                             | 9  |
| 4.4   | VENTILATION SYSTEM                                         |    |
| 4.5   | Domestic Hot Water System                                  |    |
| 4.6   | Controls System                                            | 12 |
| 5.0   | MEASURES SELECTED FOR IMPLEMENTATION (UNDER C.OP. PROGRAM) | 14 |
| 5.1   | Measure 1: Reheat coils                                    | 14 |
| 5.2   | Measure 2: Fan feedback sensor                             | 16 |
| 5.3   | MEASURE 3: MORNING SCHEDULES                               |    |
| 5.4   | MEASURE 4: NIGHT SETBACK TEMPERATURES                      | 19 |
| 5.5   | Measure 5: Holiday schedule                                | 20 |
| 5.6   | MEASURE 6: EXHAUST FANS RUN OUTSIDE OCCUPIED PERIODS       | 21 |
| 5.7   | MEASURE 7: HV5 TEMPS AND HEATING COILS                     | 22 |
| 5.8   | MEASURE 8: TEMPERATURE SENSORS                             | 23 |
| 6.0   | MEASURES TO BE CONSIDERED FOR FUTURE IMPLEMENTATION        |    |
| 6.1   | Measure 9: Reversible heat pumps for existing DX coils     | 26 |
| 6.2   | Measure 10: Hydronic Air Source Heat Pump                  |    |
| 7.0   | NEXT STEPS – IMPLEMENTATION PHASE AND COMPLETION PHASE     |    |
| 7.1   | IMPLEMENTATION PHASE                                       |    |
| 7.2   | COMPLETION PHASE                                           | 30 |
| APPEN | DIX A: INVESTIGATION PHASE SUMMARY TABLE                   |    |
| APPEN | DIX B: COMPLETION PHASE SUMMARY TABLE                      |    |
| APPEN | DIX C: SAMPLE TRAINING OUTLINE                             |    |
| APPEN | DIX D: TRAINING COMPLETION FORM                            | 35 |
| APPEN | DIX E: REHEAT COILS                                        |    |



BC Hydro Power smart

**FORTIS** BC<sup>-</sup> Energy at work

# 1.0 Introduction

Prism Engineering is pleased to present the results of the Investigation Phase that was conducted as part of BC Hydro's Continuous Optimization for Commercial Buildings Program for Ballenas Secondary School. The objective of an Investigation is to identify deficiencies and improvements in the operation of a facility's mechanical equipment, lighting, and related controls, and determine opportunities for corrective action that reduce energy consumption and preserve the indoor environmental quality.

This document is a complete record of the work performed at this facility, including the in-depth investigation of the building systems and the implementation of selected measures to optimize building performance.

The Recommissioning Investigation Report provides an overview of the recommendations for the implementation of measures. This information is not considered a specification or detailed sequence of operations. The intent is to provide an overview of the recommendation that can be built upon during the implementation phase as part of any detailed design that may be required. Certain measures may require further investigation and specification for the correct implementation by the owner or the DDC contractor.

Eight recommended retrofits were identified as a part of this investigation. The proposed measures will be reviewed in a meeting with School District 69 and Prism Engineering representatives to determine which measures will be implemented.

Recommended retrofits for implementation include:

- Measure 1: Reheat coils
- Measure 2: Fan feedback sensors
- Measure 3: Morning schedule
- Measure 4: Night setback temperatures
- Measure 5: Holiday schedules
- Measure 6: Exhaust fans run outside occupied hours
- Measure 7: HV5 temps and heating coils
- Measure 8: Temperature sensors

These measures are presented in the Investigation Summary Table (see Appendix A).

While the investigation focuses on low-cost improvements with short paybacks, some capital improvement opportunities may also be identified. Major retrofit measures are beyond the scope of this program, but other BC Hydro and FortisBC programs provide a variety of incentives to complete the retrofits. Retrofits were identified as a part of this investigation that could potentially qualify for other BC Hydro and FortisBC programs, these measures are described in Section 6.

Retrofits include:

- Measure 9: Reversible heat pumps for existing DX coils
- Measure 10: Hydronic Air Source Heat Pump







# 2.0 Project Overview

| Project Information                       | Complete cells this background colou | r  |      |                      |
|-------------------------------------------|--------------------------------------|----|------|----------------------|
| RCx Project File #                        | BCH-07832                            |    |      |                      |
| Date of Workbook Update                   | 20-Jun-2022                          |    |      |                      |
| Organization                              | School District 69                   |    |      |                      |
| Building Name                             | Ballenas Secondary School            |    |      |                      |
| Building Type                             | Large School                         |    |      |                      |
| Location (City)                           | Parksville, BC                       |    |      |                      |
| Owner Contact                             | Phil Munro                           |    |      |                      |
| Investigation Phase start date            | 01-Feb-2022                          |    |      |                      |
| Participated in previous BCH RCx program? | No                                   |    |      |                      |
| Previous RCx File #                       |                                      |    |      |                      |
| Previous RCx completion date              |                                      |    |      |                      |
| De thatte e he ferme et i en              |                                      |    |      |                      |
| Building Information                      |                                      |    |      |                      |
| Facility Area (ft2)                       |                                      |    |      |                      |
| Annual elec consumption (kWh)             |                                      |    |      | kWh/ft <sup>2</sup>  |
| Annual elec costs (\$)                    |                                      | \$ | 0.10 | Avg. \$/kWh          |
| Fuel type                                 | Natural Gas                          |    |      | 1 2                  |
| Annual fuel consumption (GJ)              |                                      |    |      | ekWh/ft <sup>2</sup> |
| Annual fuel cost (\$)                     |                                      | \$ | 12.1 | Avg. \$/GJ           |
| Total GHG emissions (tCO2e/yr)            | 202                                  |    |      |                      |
| Total Energy Cost                         | \$ 105,560                           | \$ | 0.90 | \$/ft <sup>2</sup>   |
| Energy Use Intensity (ekWh/ft2)           | 14.3                                 |    |      |                      |
| Year for energy data above                | 2020                                 |    |      |                      |







# 3.0 Savings Summary

#### [Paste image of Savings Summary Table from the RCx Workbook – also UPDATE after Implementation]

| Savings Summary             | Previous, still working | New + Previous, rectify + Previous, documented |           |               |           |               |           |
|-----------------------------|-------------------------|------------------------------------------------|-----------|---------------|-----------|---------------|-----------|
|                             |                         | Ident                                          | ified     |               | Selected  | Implemented   |           |
| # of measures               | 0                       | 9                                              | )         | 8             |           | 8             |           |
|                             | Re-claim Savings        | <b>Total Savings</b>                           | % Savings | Total Savings | % Savings | Total Savings | % Savings |
| Electrical savings (kWh/yr) | -                       | - 80,837                                       | -13.7%    | 47,454        | 8.1%      | 47,454        | 8.1%      |
| Fuel savings (GJ/yr)        | -                       | 2,629                                          | 67.1%     | 1,090         | 27.8%     | 1,090         | 27.8%     |
| Cost savings (\$)           | \$-                     | \$ 23,893                                      | 22.6%     | \$ 17,888     | 16.9%     | \$ 17,888     | 16.9%     |
| GHG reduction (tCO2e/yr)    | -                       | 130.2                                          | 64.6%     | 54.8          | 27.2%     | 54.8          | 27.2%     |
|                             |                         |                                                |           |               |           |               |           |
| # of Abandoned measures     | 0                       |                                                |           |               |           |               |           |







# 4.0 Brief Description of Existing System

This section contains a brief description of the existing HVAC and Controls system. The information is intended to provide a general overview only.

# 4.1 Facility Description

Ballenas Secondary School was built in 1976 with several later additions. The current floor area is 117,143 sqft. The building includes classrooms, administration offices, gym, theater, art studio, and technical teaching areas.

#### Table 1: Schedules

|                    | Area          | Days            | From   | То               |
|--------------------|---------------|-----------------|--------|------------------|
| Occupancy          | Classrooms    | All schooldays  | 8:40am | 3:05pm           |
|                    | Office hours  | All school days | 7:30am | 4pm              |
| Building Equipment | 4.WS1         | Monday-Friday   | 7am    | 4pm              |
|                    |               | June/July       | 7am    | 9am              |
|                    |               |                 | 1pm    | 3pm              |
|                    | Main schedule | Monday-Friday   | 7am    | 4pm (3:45pm Thu) |
|                    |               | Holidays        | Off    |                  |

## 4.2 Heating System

Heating for the building is provided by three boilers, see Table 2.

#### Table 2: Boilers

| Boiler | Area                                         |
|--------|----------------------------------------------|
| B-1    | Veissmann Vitocrossal 200 condensing boilers |
| B-2    | 1071 MBH (input)                             |
| B-3    | Veissmann Vitorond 200 non-condensing        |
|        | 1096 MBH (input)                             |



Figure 1: Boilers B-2 (left) and B-3. B-1 is the same make and model as B-2.

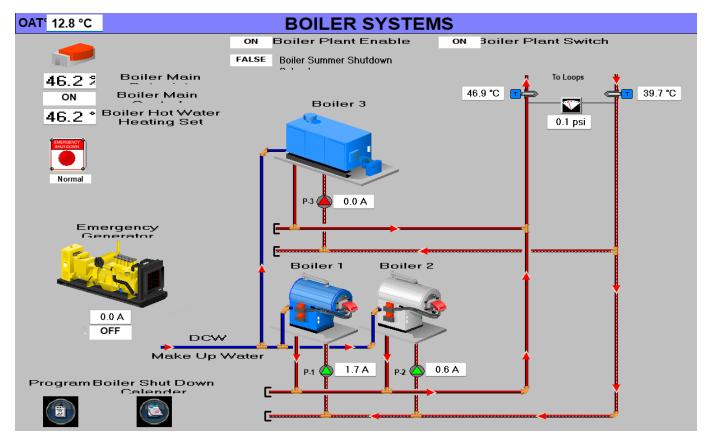



Figure 2: Boilers DDC Graphic

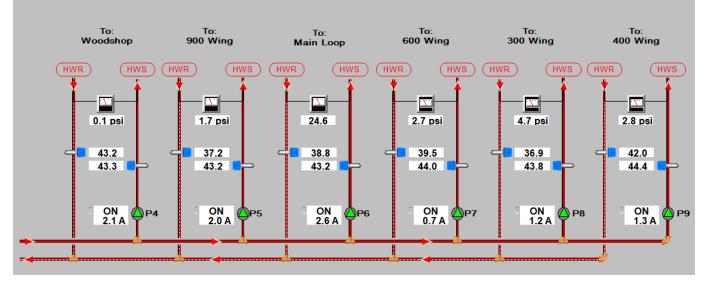
**Recommissioning Report** 





FORTIS BC<sup>\*</sup>
Energy at work

Heating water is distributed through six loops to air handlers, duct mounted reheat coils, fan coils, unit heaters, and radiant panels.


#### Table 3: Pumps

| Тад           | Serves                 | Size             | Flow     | Head (Ft) |
|---------------|------------------------|------------------|----------|-----------|
| P-1           | Boiler pumps for       |                  |          |           |
| P-2           | B-1 and B-2            |                  |          |           |
| P-3           | Boiler pump for<br>B-3 | 305W             |          |           |
| P-4           | Woodshop               | 440W             |          |           |
| P-5           | 900 Wing               | 990W             |          |           |
| P-6           | "main Loop"            | 1150W            |          |           |
| P-7           | 600 Wing               | 380W             |          |           |
| P-8           | 300 Wing               | 430W             |          |           |
| P-9           | 400 Wing               | 430W             |          |           |
| P-HV3         | HV3 HC                 | 1/6 HP           | 0.63 l/s | 48 KPa    |
| P-AHU3        | AHU3 HC                | 144 W (estimate) |          |           |
| P-AHU4        | AHU4 HC                | 740 W (estimate) |          |           |
| P-HV5         | HV5 HC                 | 500W             | 2.5 l/s  | 28 ft     |
| P-HV8-P2      | HV8AC8 loop            | 1/2 HP           | 2.27 l/s | 51 kPa    |
| P-HV8-P1      | HV8AC8 HC              | 1/3 HP           | 1.5 l/s  | 60 kPa    |
| P-HV13-<br>PS | HV13 HC                | 1/12 HP          | 0.5 l/s  | 15 ft     |
| P-HV14-<br>PS | HV14 HC                | 1/12 HP          | 0.5 l/s  | 15 ft     |
| P-DHWR        | DHW Circulation        | Unknown          |          |           |



BC Hydro Power smart





#### Figure 3: Main distribution loops

A glycol heating loop serves the heating coil in HV5; this is heated by heat exchanger HX-HV5, see Figure 4.



Figure 4: HX-HV5 heat exchanger

# 4.3 Cooling System

There is no central cooling system, but several air handlers have DX cooling, detailed in section 4.4, and there are smaller mini split units serving specific spaces, see **Error! Reference source not found.** for example.



BC Hydro Power smart





Figure 5: Additional Fujitsu split unit above multi-use area.

# 4.4 Ventilation System

The building has 18 air handlers, see Table 4. Most are installed on the roof.

#### Table 4: Air Handling Units

| Tag  | Service                               | Airflow<br>(cfm) | Supply<br>Fan<br>(HP) | Return<br>Fan<br>(HP) | Heating/cooling coils                                 | Outdoor air    | Schedule               |
|------|---------------------------------------|------------------|-----------------------|-----------------------|-------------------------------------------------------|----------------|------------------------|
| HV1A | Multi-use space                       | 21,405           | 15                    | 7.5                   | Heating coil                                          | Mix<br>30% Min | Matches 4.WS1<br>0% OA |
| HV2  | Office and 200<br>Wing via<br>reheats | 9,464            | 7.5                   | 3                     | DX cooling,<br>23 Ton                                 | Mix<br>30% Min | 1.WS1                  |
| HV2A | 900 Wing                              | 9,345            | 7.5                   | 5                     | In-duct DX coils<br>Heating coil                      | Mix<br>30% Min | 1.WS1                  |
| AHU3 | 300 Wing                              | 5,500            | 5<br>VSD              | -                     | Heating coil                                          | Mix<br>30% Min | 1.WS1                  |
| HV3  | Science                               | 6,140            | 5                     | 1.5                   | Heating coil.                                         | Mix<br>30% Min | 1.WS1                  |
| HV3A | 900 West                              | 11,260           | 7.5                   | 5                     | In-duct DX coils<br>Heating coil                      | Mix<br>30% Min | 1.WS1                  |
| AHU4 | Library 602 605                       | 7,000            | 5<br>VSD              | 3<br>VSD              | Heating coil.                                         | Mix<br>30% Min | 1.WS1                  |
| HV4  | 700 Block<br>Art studio               | 2,000            | 1                     | -                     | DX cooling, 6 1/4 Ton<br>Heating coil. Electric heat. | Mix<br>30% Min | 1.WS1                  |
| AHU5 | Shop Area                             | 2,500            | 2<br>VSD              | -                     | Heating coil                                          | Mix<br>30% Min |                        |

BC Hydro Power smart

FORTIS BC<sup>\*</sup>
Energy at work

|              |                       |                  |                       |                       |                                                            | I               | 11                               |
|--------------|-----------------------|------------------|-----------------------|-----------------------|------------------------------------------------------------|-----------------|----------------------------------|
| Тад          | Service               | Airflow<br>(cfm) | Supply<br>Fan<br>(HP) | Return<br>Fan<br>(HP) | Heating/cooling coils                                      | Outdoor air     | Schedule                         |
| HV5          | Wood Shop             | 9,000            | 7.5                   |                       | Heating coil                                               | Mix<br>Min 10%  | 50200.SCH1<br>5am-4:30pm M-F     |
| HV8AC8       | 400 Wing              | 10,299           | 7.5                   | 5                     | DX cooling 2-stage, 28 Ton<br>Heating coil                 | Mix<br>Min 30%. | 6am-4pm M-F<br>7am start Wed     |
| HV9<br>(MUA) | Tech Lab              | 6000             | 3                     | -                     | None                                                       | 100% OA         | 1.WS1                            |
| HV10         | Auditorium            | 6,362            | 5                     | -                     | 3 heating coils (one for each zone)                        | Mix<br>30% Min  | 6.WS6<br>8am-4pm M-F             |
| HV11         | Gym                   | 10,600<br>(est.) | 7.5                   | -                     | Heating coil                                               | Mix<br>30% Min  | 6.WS6<br>8am-4pm M-F             |
| HV11A        | Weights / Gym<br>Mezz | 2400 cfm         | 1.5                   | -                     | DX cooling 2-stage, 12 Ton<br>(estimated)<br>Heating coil. | Mix<br>30% Min  | 6.WS6<br>8am-4pm M-F             |
| HV12         | Metal shop            | 9000<br>(est.)   | 7.5<br>(est.)         | -                     | Heating coil                                               | Mix<br>20% Min  | 50200.SCH<br>5am-4:30 M-F        |
| HV13         | Counselling           | 6000 cfm         | 5                     | 1.5                   | Heating coil.                                              | Mix<br>30% Min  | 1.WS1<br>CO2 sensor in<br>return |
| HV14         | 800 Block             | 6000 cfm         | 5                     | 1.5                   | Heating coil.                                              | Mix<br>30% Min  | 1.WS1<br>CO2 sensor in<br>return |

#### Table 5: Exhaust fans

| Тад       | Service                  | Airflow (l/s) | Fan       |
|-----------|--------------------------|---------------|-----------|
| EF1       | Male washrooms           | 380           | 0.25 HP   |
| EF2       | Female washrooms         | 380           | 0.25 HP   |
| EF3       | Foods                    | 1120          | ½ HP      |
| EF4       | EF805                    | 1415          | -         |
| EF4A      | Staff washrooms          | 94            | 123 W     |
| EF5       |                          | 300           | 10.4 Amps |
| EF5A      | Multi-purpose storage    | 300           | 242 W     |
| EF7       | Male washroom            | 124           | 147 W     |
| EF8       | Female washroom          | 300           | 242 W     |
| EF9       | Gym change rooms         |               |           |
| EF10      | Staff washrooms 400 wing |               |           |
| EF1 CP301 | -                        |               |           |
| EF2 CP301 | -                        |               |           |
| EF3 CP301 | -                        |               |           |





#### BC Hydro Power smart



|          |                         |               | Powers    | 511 |
|----------|-------------------------|---------------|-----------|-----|
| Tag      | Service                 | Airflow (I/s) | Fan       |     |
| SHOP EF1 | -                       |               | VSD       |     |
| SHOP EF2 | -                       |               | VSD       |     |
| SHOP EF4 | -                       |               | VSD       |     |
| EF 805   | 200 Wing staff washroom |               | 10.4 Amps |     |

## **EXHAUST FANS**

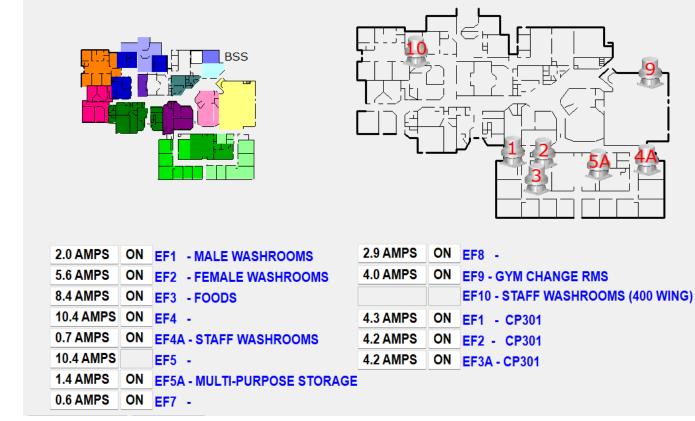



Figure 6: Exhaust fans in the DDC

## 4.5 Domestic Hot Water System

The school has two domestic hot water (DHW) systems, each serving part of the building. The first is a 199 MBH (input) 378 liter gas-fired tank heater, and recirculation pump.

The second is a 30 kW 420 liter electric water heater, with recirculation pump.

## 4.6 Controls System

The HVAC system is controlled by a Delta Controls DDC with ORCAView 3.40. Remote access to the system is available. Boilers, pumps, HV-5, HV8, HV-12 use the BACnet protocol. Other systems use the older "V2" protocol.



BC Hydro Power smart FORTIS BC<sup>..</sup> Energy at work

## **BALLENAS SECONDARY SCHOOL**

| ON | HV1A (MULTI)             | HV11 (GYM)               | ON        | Schedule 1.WS1 ON  |
|----|--------------------------|--------------------------|-----------|--------------------|
| ON | IV2 (OFFICE and 200 WING | HV12 (METAL)             | ON        | Schedule 1.WS4 OFF |
| ON | HV2A (900 EAST)          | V13 (COUNSEL and 701,702 | ON        | Schedule 2.WS4 ON  |
| UN | 1102A (300 EAST)         |                          | UN        | Schedule 4.WS1 ON  |
| ON | AHU3 (300BLK)            | HV14 (800)               | ON        | Schedule 6.WS3 ON  |
| ON | HV3A (900 WEST)          | DHWR                     |           | Schedule 6.WS4 ON  |
| ON | AHU4 (LIB 602 605)       | BOILER SYSTEM            | OFF       |                    |
| ON | HV4 (700)                | PUMPS                    |           |                    |
| ON | AHU5 (WELDING)           | DHW                      |           |                    |
| ON | HV5 (WOOD)               | EXHAUST FANS             |           |                    |
| ON | HV8AC8(400)              | NETWORK                  |           |                    |
| ON | HV9 (TECH)               | E1 (SHOP)                |           | BSS                |
| ON | HV10 (AUDITORIUM)        | E2 (SHOP)                |           |                    |
| ON | HV11A (WEIGHT RM)        | E4 (SHOP)                |           |                    |
|    |                          |                          |           |                    |
|    |                          |                          |           |                    |
|    | PREVIOUS                 | HELP NETWORK FI          | LOOR PLAN |                    |
|    |                          |                          |           |                    |
|    |                          |                          |           |                    |

Figure 7: Main menu of the DDC system







# 5.0 Measures Selected for Implementation (Under C.Op. Program)

This section provides an overview of each measure, recommendations for implementation, and update after implementation.

For each measure, costs, savings, and payback calculations can be referenced in the *Investigation Summary Table* (see Appendix A).

## 5.1 Measure 1: Reheat coils


#### 5.1.1 Description of Finding

Several reheat coils and their control valves were found to be blocked or passing, see Table 6.

Passing valves result in excessive zone heating. Blocked valves can also cause increased heating because the air handler needs a higher supply air temperature to maintain the setpoint in affected zones. This may result in overheating other zones which do not require extra heating.

#### Table 6: Reheat coil issues

| Air handler | Blocked                                        | Passing                 | Comments                                                                              |
|-------------|------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------|
| HV1A        |                                                | RM914B, RM914C          |                                                                                       |
| HV2         | RM203, RM116, COPY153,<br>VP, PRINCIPAL, RM145 |                         | All reheats set manually to<br>50%<br>RM201/2 reheats have<br>failed SAT sensors      |
| HV2A        | RM908, RM911, RM913,<br>RM915                  |                         |                                                                                       |
| AHU3        | 303                                            | 301, 304                |                                                                                       |
| HV3         | LAB603, LAB OFF603,<br>LOCKERS, CHEM STO.      |                         | All reheats set manually to 50%.                                                      |
| HV3A        | RM904, RM906                                   | RM901A, RM907           | RM920 suspected blocked,<br>RM919 suspected passing<br>based on room<br>temperatures. |
| AHU4        | OFFICE605, CHEM605                             |                         | BIO 601, LIB, LIB EAST also<br>seem low.<br>Valve position set to 50% in<br>code.     |
| HV8AC8      | 404B, 405                                      |                         |                                                                                       |
| HV10        |                                                | Stage duct heating coil |                                                                                       |
| HV11A       | Main AHU coil                                  |                         |                                                                                       |
| HV13        | 160, 162, 159                                  | 157                     |                                                                                       |
| HV14        | 801, 803, 804, 805                             |                         | Only 803 is completely blocked                                                        |









Documentation for reheat problems can be found in Appendix E: Reheat Coils.

AHU-3 reheat coil issues shown here as an example. AHU-3's supply air temperature is 17.3°C at the time Figure 8 was captured. Where reheat coil control valves are fully closed, the reheat coil supply air temperatures should equal the AHU-3 supply air temperature. However, reheat coil supply air temperatures for rooms 301 and 304 are 23.1 and 20.8°C respectively, despite the control valves being fully closed. This suggests the control valves are passing.

The reheat for room 303 is increasing the air temperature to 19.1°C but failing to meet the supply air setpoint (20.1°C) even with the valve almost fully open. AHU-3 is supplying air too hot for rooms 300 and 305. This may be due to Room 303 failing to meet setpoint.

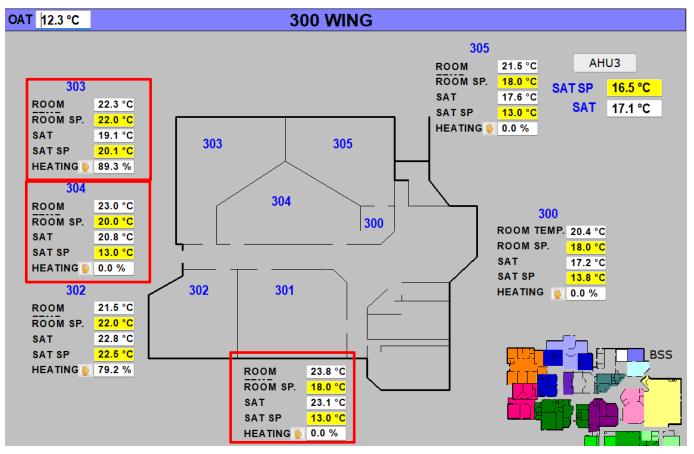



Figure 8: Reheats for 301 and 304 are passing. Reheat for 303 is partly blocked.

#### 5.1.2 Measure Description

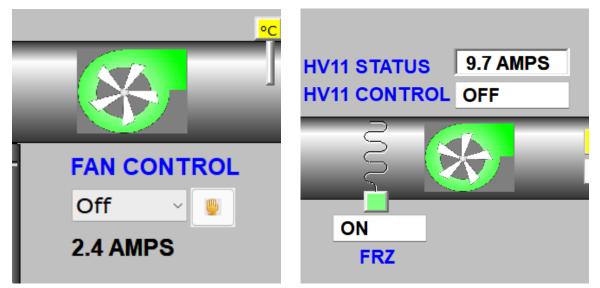
We recommend investigating of all reheat coils in the building to identify coils/valves with issues and diagnosing the issue (valve, coil, or actuator). Some cases may be solved with maintenance, but we expect some valves to need replacement.

This is a required measure since degrading or failing valves/coils will eventually lead to comfort issues.








#### 5.1.3 Measure Implementation Update

[Provide confirmation details AFTER the measure is implemented and verified]

#### 5.2 Measure 2: Fan feedback sensor

#### 5.2.1 Description of Finding

The HV10 and HV11 supply fan feedback sensors report that the fans operate despite being commanded off, see Figure 9.



#### Figure 9: HV10 (left) and HV11 (right) supply fans

The HV10 supply fan sensor reports 2.4 A when commanded off. This triggers regular operation of the unit, including opening the MAD to its minimum setting (30%), and modulating the heating coils to maintain regular occupied setpoints in the auditorium.

The sensor reports a similar current when the fan is commanded on, which indicates it may be operating continuously.

```
22 • IF HV10_WS OR HV10_OVR OR BUILDING_FLUSH OR H10_ENHANCED_WS THEN

23 • HV10_SFC = ON

24 • ELSE

25 • NSB_HV10 = SWITCH(NSB_HV10, HV10_RT1, NSB_SP, NSB_SP + 2)

26 • HV10_SFC = NSB_HV10

27 • ENDIF HV10_SFC = OFF
```

#### Figure 10: HV10\_SFC set to OFF

```
33 • IF HV10_SFS > 1 THEN

34 • DO_EVER HV10_SFS = 2.5

35 • HV10_MAD_RAMP = LIMIT(HV10_MAD_RAMP + (HV10_RAT - 18), 0, 100)

36 • ENDDO

37 • H10_MAT_SP = 12

38 • HV10_MAD = HSEL(HV10_MAD_MIN, HV10_SAT_CO)

39 • HV10_MAD = LSEL(HV10_MAD, HV10_MAD_LL_CO, HV10_MAD_RAMP)
```

Figure 11: Fan feedback value HV10\_SFS indicates significant current going to the fan





 $\times$ 



HV10\_MAD\_TL (6.TL11) Trend Log

| On Setup Tre | and Data | ¥ 🔮         |          | 22:25:47 | 18-May-2022 |
|--------------|----------|-------------|----------|----------|-------------|
| Time         | HV10_SAT | HV10_SAT_SP | HV10_MAD | HV10_SFS |             |
| 22:25.47     | 15.0     | 28.0        | 30.0     | 2.5      |             |
| 22:25.17     | 15.0     | 28.0        | 30.0     | 2.5      |             |
| 22:24.47     | 15.0     | 28.0        | 30.0     | 2.5      |             |
| 22:24.17     | 15.1     | 28.0        | 30.0     | 2.5      |             |
| 22:23.47     | 15.0     | 28.0        | 30.0     | 2.5      |             |
| 22:23.17     | 15.0     | 28.0        | 30.0     | 2.5      |             |
| 22:22.47     | 15.0     | 28.0        | 30.0     | 2.5      |             |
| 22:22.17     | 15.0     | 28.0        | 30.0     | 2.5      |             |
| 22:21.47     | 15.0     | 28.0        | 30.0     | 2.5      |             |
| 22:21.17     | 15.0     | 28.0        | 30.0     | 2.5      |             |
| 22:20.47     | 15.0     | 28.0        | 30.0     | 2.5      |             |
| 22:20.17     | 15.1     | 28.0        | 30.0     | 2.5      |             |
| 22:19.47     | 15.0     | 28.0        | 30.0     | 2.5      |             |
| 22:19.17     | 15.0     | 28.0        | 30.0     | 2.5      |             |
| 22:18.47     | 15.1     | 28.0        | 30.0     | 2.5      |             |
| 22:18.17     | 15.1     | 28.0        | 30.0     | 2.5      |             |
| 22:17.47     | 15.1     | 28.0        | 30.0     | 2.4      |             |
| 22:17.17     | 15.1     | 28.0        | 30.0     | 2.5      |             |
| 22:16.47     | 15.1     | 28.0        | 30.0     | 2.5      |             |
| 22:16.17     | 15.2     | 28.0        | 30.0     | 2.5      |             |
| 22:15.47     | 15.1     | 28.0        | 30.0     | 2.5      |             |

#### Figure 12: Value of HV10 fan feedback sensor

HV11 which serves the gym has the same issue. The sensor reports 9.8 Amp when commanded off, and 17.8 Amps when commanded on, so it is likely this is a sensor function or calibration issue.

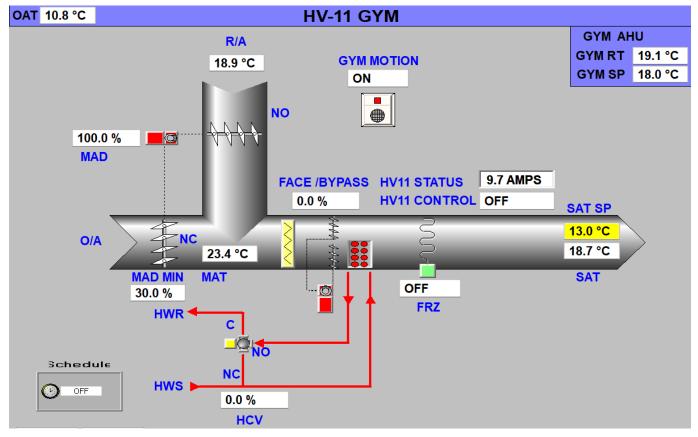



Figure 13: HV11 supply fan feedback is 9.7 Amps even when the fan is commanded off



BC Hydro Power smart FORTIS BC<sup>\*</sup>
Evergy at work

The air handler operates as normal if the supply fan reports it's running, including opening the mixed air damper and heating valve, which can lead to heat losses even if there is no airflow.

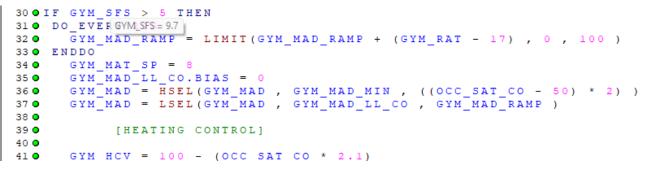



Figure 14: HV1 operates as normal if the supply fan feedback indicates the fan is running

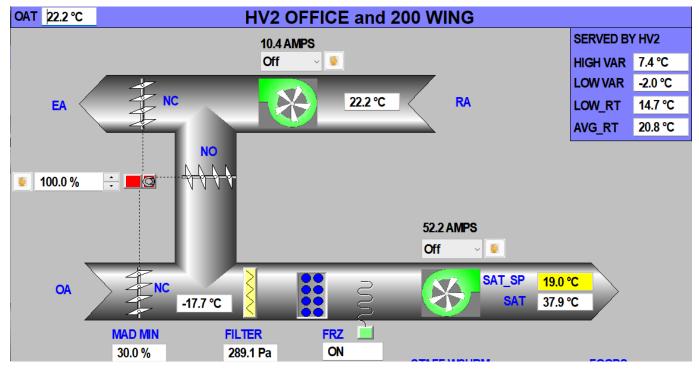



Figure 15: HV2 supply and return fans sensors both indicate fans are running when commanded off

#### 5.2.2 Measure description

Verify the HV10 and HV11 supply fan feedback sensors correctly reports that status of the fan by manually checking fan status in the field while commanding the fans on and off.

Savings calculations assume the HV10 controller is faulty (i.e., HV10 operates when commanded off), and the HV11 fan sensor requires replacement.

## 5.3 Measure 3: Morning schedules

#### 5.3.1 Description of Finding

Air handlers HV5, HV9, HV12 start at 5am, well before occupancy.







#### 5.3.2 Description of Measure

Change start times of these air handlers to 7am, Monday to Friday. Ensure that units are operating correctly, including correcting HV5 heating coil and loop issues, see Measure 5.7.

### 5.4 Measure 4: Night setback temperatures

#### 5.4.1 Description of Finding

Lowering room temperature setpoints during unoccupied periods (commonly known as "night setback") reduced heat losses without affecting comfort during occupied hours. Most night setback temperature setpoints in the building are around 19°C. This is too high to provide significant energy savings.

#### Table 7: Night setback temperatures

| Тад    | NSB (°C)         |
|--------|------------------|
| HV1A   | 19               |
| HV2    | 15               |
| HV2A   | 19 (NSB_SP)      |
| AHU3   | 15               |
| HV3    | 19               |
| HV3A   | 19               |
| AHU4   | 19               |
| HV4    | 15               |
| AHU5   | 19 (SHOP_NSB_SP) |
| HV5    | 20               |
| HV8AC8 | 19 (NSB203_SP)   |
| HV9    |                  |
| HV10   | 19 (NSB_SP)      |
| HV11A  | 0                |
| HV11   | 14               |
| HV12   | 14 (HV12_NSB_SP) |
| HV13   | 16 (P301_NSB)    |
| HV14   | 16 (P303_NSB)    |

HV5 incorrectly uses the mixed air damper setpoint value in the night setback calculation, see Figure 16. Since this value is fixed to 30% (Figure 17), night setbacks are never enabled for HV5.

4 OHV5\_NSB = Switch ( HV5\_NSB, HV5\_DC\_MAD\_SP, HV5\_NSB\_SP - 1, HV5\_NSB\_SP)

Figure 16: HV5 night setback calculation







| HV5_DC_N                 | IAD_SP (50000.AV9) Analog Variable | - |   | × |
|--------------------------|------------------------------------|---|---|---|
| <b>%</b> 30              | ). <b>0 %</b> 30.0 %               | • | 2 |   |
| Auto Value<br>Control So | -                                  |   |   |   |
| Description              | Setup                              |   |   |   |
| Fixed MAD po             | sition when DC running             |   |   |   |

#### Figure 17: HV5 mixed air damper setpoint is manually set to 30%

#### 5.4.2 Measure Description

Lower night setbacks to 15°C for all air handlers.

Correct HV5 night setback programming to use room temperature.

## 5.5 Measure 5: Holiday schedule

#### 5.5.1 Description of Finding

The holiday schedules for spring and summer breaks do not match the actual school calendar. The spring break schedule is offset from actual weekdays. The summer break schedule only covers part of July and August.

| STAT_HOLIDAYS (1.AS1) Annual Schedule — 🗆 🗙 |     |     |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |  |  |
|---------------------------------------------|-----|-----|---------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|
| • <b>Ve</b> ør                              |     | Off |         |      | <ul> <li></li> <li><!--</td--><td></td></li></ul> |      |  |  |
| Main Sel                                    | up  |     |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |  |  |
| July                                        | Aug | Sep | it O    | lct  | Nov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dec  |  |  |
| Jan                                         | Feb | Mar | A       | pril | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | June |  |  |
|                                             |     | Μ   | arch 20 | 22   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |  |  |
| Sun                                         | Mon | Tue | Wed     | Thu  | Fri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sat  |  |  |
|                                             |     | 1   | 2       | 3    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5    |  |  |
| 6                                           | 7   | 8   | 9       | 10   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12   |  |  |
| 13                                          | 14  | 15  | 16      | 17   | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19   |  |  |
| 20                                          | 21  | 22  | 23      | 24   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26   |  |  |
| 27                                          | 28  | 29  | 30      | 31   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |  |  |
|                                             |     |     |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |  |  |
|                                             |     |     |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |  |  |
| OK Cancel Apply ?                           |     |     |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |  |  |

Figure 18: Spring break exception schedule

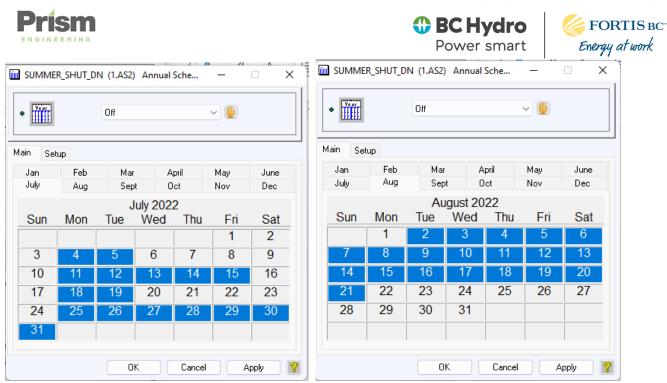



Figure 19: Summer break exception calendar

In comparison, Gym and Auditorium have summer break schedules that cover all of July and August, which saves energy during an unoccupied period.

#### 5.5.2 Measure Description

Update holiday schedules for all air handlers to match school calendar on a regular basis.

#### 5.5.3 Measure Implementation Update

[Provide confirmation details AFTER the measure is implemented and verified]

#### 5.6 Measure 6: Exhaust Fans run outside occupied periods

#### 5.6.1 Description of Finding

Several exhaust fans were found to be running while the building was unoccupied, see Figure 21. Unless there are specific needs, such as moisture/pollutant control, they should be switched off when the building is unoccupied.

EF1 and EF2 are overridden on. This causes them to operate continuously.

EF4, EF5, and EF9 feedback sensors show each operates when commanded off.

EF7 and EF8 are operating continuously. Both are programmed to operate per weekly occupancy schedules that no longer exist in the DDC as seen in Figure 20.

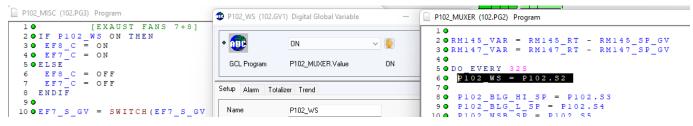



Figure 20: EF7 and EF8 calendar logic



FORTIS BC<sup>+</sup> Energy at work

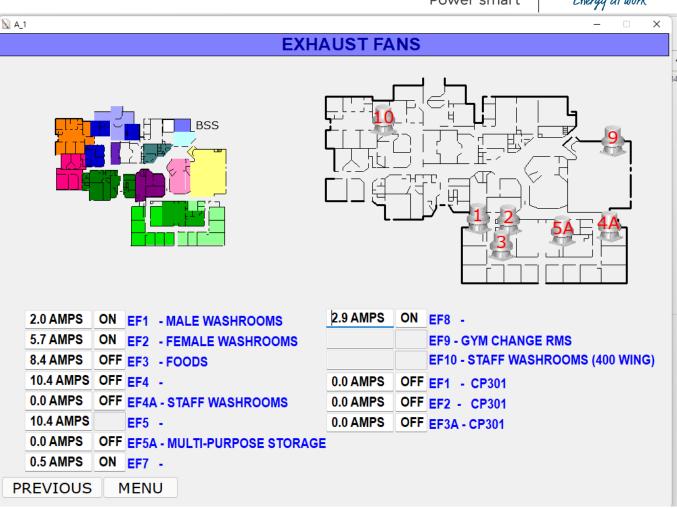



Figure 21: Exhaust fans overview, at 10:24pm on a Sunday

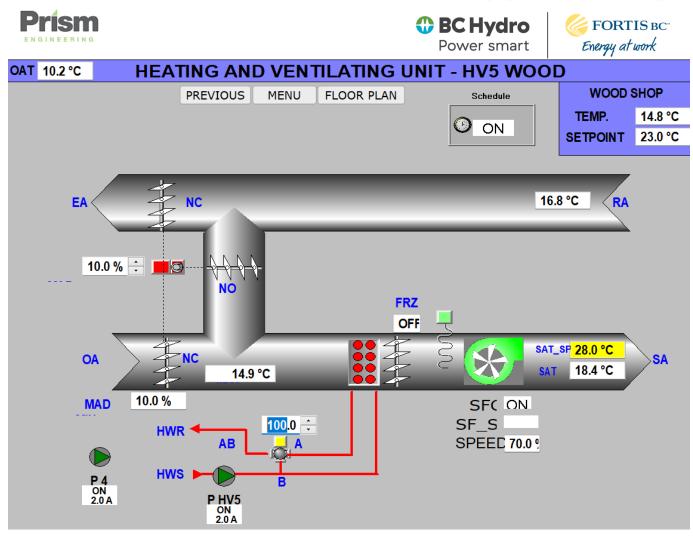
#### 5.6.2 Measure Description

Remove overrides for EF1 and EF2. Correct schedule logic for EF7 and EF8.

Verify correct operation of EF4, EF5, and EF9 fans and the feedback sensors in the field. Replace the sensors or control wiring as indicated by field tests.

Predicted energy savings assume EF1, EF2, EF7, and EF8 currently operate continuously. Estimated measure costs assume EF4, EF5, and EF9 feedback sensors need to be replaced.

#### 5.6.3 Measure Implementation Update


[Provide confirmation details AFTER the measure is implemented and verified]

## 5.7 Measure 7: HV5 temps and heating coils

#### 5.7.1 Description of Finding

HV-5 is struggling to meet its supply air and zone temperature setpoints despite its heating coil control valve fully open as seen in Figure 22.







#### 5.7.2 Measure Description

Investigate HV5 heating loop and coil and confirm correct operation. Correct any issues.

#### 5.7.3 Measure Implementation Update

[Provide confirmation details AFTER the measure is implemented and verified]

#### 5.8 Measure 8: Temperature sensors

#### 5.8.1 Description of Finding

Several supply air and room temperature sensors are providing incorrect readings, see Table 8.

Low supply air temperature readings can cause unnecessary reheat. Low room temperature readings can cause unnecessary reheat as well as overnight "night setback" operation of air handlers.







#### **Table 8: Temperature Sensor Issues**

| Sensor                       | Issue / constant reading |
|------------------------------|--------------------------|
| RM201 supply air temperature | Constant value (-17.1°C) |
| RM202 supply air temperature | Constant value (-17.1°C) |
| RM203 supply air temperature | Constant value (-17.1°C) |
| RM201                        | Constant value (14.7°C)  |
| RM202                        | Constant value (18.1°C)  |
| RM203 room temperature       | Constant value (22.7°C)  |
| RM116 room temperature       | Constant value (18.5°C)  |
| ART ROOM room temperature    | Constant value (23.3°C)  |
| RM911 room temperature       | Constant value (17.7°C)  |

| <b></b>          |       |       |        |        |         |
|------------------|-------|-------|--------|--------|---------|
| 4 RM203_SAT      | -17.7 | DEG_C | 1.IP11 | Analog | Input   |
| ut RM201_SAT     | -17.7 | DEG_C | 1.IP14 | Analog | Input   |
| RM202_SAT        | -17.7 | DEG_C | 1.IP15 | Analog | Input   |
| ALMO CAT OFFICET | 4.0   | DEC C | 1.017  | A 1    | CL 1 11 |

#### Figure 23: Supply air temperature sensor values

| 🔛 RM201_TL (1.TL                                                                                                                                                                                                                                            | 5) Trend Log                                                 |                                                              |                                                                                                                                                                                                             | -                                                            | ×           | 16.31 | RM202_TL (1.TL                                                                                                                                                                                                                                                                       | 7) Trend Log                                                                                                                                                                                                                                                                                                                                   |                                                              |                                                               | -                                                                  |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|-------------|
| • 📐 off                                                                                                                                                                                                                                                     |                                                              | ~ 🔮                                                          |                                                                                                                                                                                                             | 11:16:55                                                     | 18-May-2022 |       | • 📐 off                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                | - 🖤                                                          |                                                               | 11:11:10                                                           | 18-May-2022 |
| Main Setup Tr                                                                                                                                                                                                                                               | end Data                                                     |                                                              |                                                                                                                                                                                                             |                                                              |             | J     | Main Setup Tre                                                                                                                                                                                                                                                                       | end Data                                                                                                                                                                                                                                                                                                                                       | _                                                            |                                                               | _                                                                  |             |
| Time                                                                                                                                                                                                                                                        | RM201_RTS                                                    | RM201_SP_GV                                                  | RM201_SAT                                                                                                                                                                                                   | RI 201_SAT_SP                                                |             |       | Time                                                                                                                                                                                                                                                                                 | RM202_RTS                                                                                                                                                                                                                                                                                                                                      | RM202_SP_GV                                                  | RM202_SAT                                                     | RM202_SAT_SF                                                       | ,           |
| 11:16/05/18<br>10:46/05/18<br>10:16/05/18<br>10:16/05/18<br>09:46/05/18<br>09:16/05/18<br>09:16/05/18<br>07:16/05/18<br>06:16/05/18<br>05:16/05/18<br>05:16/05/18<br>05:16/05/18<br>03:16/05/18<br>03:16/05/18<br>03:16/05/18<br>03:16/05/18<br>03:16/05/18 | 14.7<br>14.7<br>14.7<br>14.7<br>14.7<br>14.7<br>14.7<br>14.7 | 22.0<br>22.0<br>22.0<br>22.0<br>22.0<br>22.0<br>22.0<br>22.0 | -17.7<br>-17.7<br>-17.7<br>-17.7<br>-17.7<br>-17.7<br>-17.7<br>-17.7<br>-17.7<br>-17.7<br>-17.7<br>-17.7<br>-17.7<br>-17.7<br>-17.7<br>-17.7<br>-17.7<br>-17.7<br>-17.7<br>-17.7<br>-17.7<br>-17.7<br>-17.7 | 38.0<br>38.0<br>38.0<br>38.0<br>38.0<br>38.0<br>38.0<br>38.0 |             |       | 11.1105/18<br>10.4105/18<br>10.4105/18<br>05.4105/18<br>05.4105/18<br>05.4105/18<br>05.4105/18<br>05.4105/18<br>05.4105/18<br>05.4105/18<br>05.4105/18<br>05.4105/18<br>05.4105/18<br>05.4105/18<br>05.4105/18<br>05.4105/18<br>05.4105/18<br>05.4105/18<br>05.4105/18<br>05.4105/18 | 18.1           18.1           18.1           18.1           18.1           18.1           18.1           18.1           18.1           18.1           18.1           18.1           18.1           18.1           18.1           18.1           18.1           18.1           18.1           18.1           18.1           18.1           18.1 | 22.0<br>22.0<br>22.0<br>22.0<br>22.0<br>22.0<br>22.0<br>22.0 | - 177<br>-177<br>-177<br>-177<br>-177<br>-177<br>-177<br>-177 | 380<br>380<br>380<br>380<br>380<br>380<br>380<br>380<br>380<br>380 |             |

|                                                                                                                                                                                                                                            |                                                                    |                                                                  |                                                                                         |                                                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              | BC Hye<br>Power sr                                           | I                                                                                                                                                                                                                           | G FO<br>Energy                                                                                                                               | RTIS<br>y at wa | 5 BC"<br>mk |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|
| 🔛 RM203_TL (1.TL                                                                                                                                                                                                                           | .3) Trend Log                                                      |                                                                  |                                                                                         | -                                                            | • ×         | 🔛 RM116_TL (1.TL4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Trend Log                                                    |                                                              |                                                                                                                                                                                                                             | - 0                                                                                                                                          | ×               |             |
| • 📐 Off                                                                                                                                                                                                                                    |                                                                    | ~ 🕎                                                              |                                                                                         | 11:11:45                                                     | 18-May-2022 | • 📐 off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              | ~ 🔮                                                          | 11:3                                                                                                                                                                                                                        | 31:45 18-May-20                                                                                                                              | 022             |             |
| Main Setup Tr                                                                                                                                                                                                                              | end Data                                                           |                                                                  |                                                                                         |                                                              |             | Main Setup Tren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d Data                                                       |                                                              |                                                                                                                                                                                                                             |                                                                                                                                              |                 |             |
| Time                                                                                                                                                                                                                                       | RM203_RTS                                                          | RM203_SP_GV                                                      | RM203_SAT                                                                               | RM203_SAT_SP                                                 |             | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RM116_RTS                                                    | RM116_SP_GV                                                  | RM116_SAT RM1                                                                                                                                                                                                               | 16_SAT_SP                                                                                                                                    |                 |             |
| 11.1105/18<br>10.4105/18<br>10.1105/18<br>09.1105/18<br>09.1105/18<br>09.1105/18<br>07.1105/18<br>07.1105/18<br>05.1105/18<br>05.1105/18<br>05.1105/18<br>05.1105/18<br>05.1105/18<br>05.1105/18<br>05.1105/18<br>03.1105/18<br>03.1105/18 | 227<br>227<br>227<br>227<br>227<br>227<br>227<br>227<br>227<br>227 | 22.0<br>22.0<br>22.0<br>22.0<br>22.0<br>22.0<br>22.0<br>22.0     | -177<br>-177<br>-177<br>-177<br>-177<br>-177<br>-177<br>-177                            | 13.0<br>13.0<br>13.0<br>13.0<br>13.0<br>13.0<br>13.0<br>13.0 |             | 11:31:45<br>11:21:45<br>11:11:45<br>11:01:45<br>11:01:45<br>11:01:45<br>11:01:45<br>11:01:45<br>11:01:45<br>11:01:45<br>09:21:45<br>09:21:45<br>09:21:45<br>09:21:45<br>09:21:45<br>09:21:45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.5<br>18.5<br>18.5<br>18.5<br>18.5<br>18.5<br>18.5<br>18.5 | 18.0<br>18.0<br>18.0<br>18.0<br>18.0<br>18.0<br>18.0<br>18.0 | 200<br>19,6<br>19,6<br>19,4<br>19,3<br>19,0<br>19,0<br>19,1<br>19,3<br>18,9<br>19,0<br>19,2<br>19,0<br>19,2<br>19,0<br>18,9<br>19,0<br>18,9<br>19,0<br>18,9<br>19,0<br>18,5<br>18,5<br>18,5<br>18,5<br>18,5<br>18,5<br>17,9 | 130<br>130<br>130<br>130<br>130<br>130<br>130<br>130                                                                                         |                 | ×           |
| • 🔀 Off                                                                                                                                                                                                                                    |                                                                    | <ul> <li>♥</li> </ul>                                            |                                                                                         | 11:27:55                                                     | 18-May-2022 | • 📐 On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              | ~ 🔮                                                          |                                                                                                                                                                                                                             | 19:39:46                                                                                                                                     | 27-Mar-20       | 122         |
| Main Setup T                                                                                                                                                                                                                               | rend Data                                                          | •                                                                |                                                                                         |                                                              |             | Main Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rend Data                                                    | _                                                            |                                                                                                                                                                                                                             |                                                                                                                                              |                 |             |
| Time<br>11:27/05/18                                                                                                                                                                                                                        | ARTS_RTS<br>23.4                                                   | ARTS_SP_GV<br>21.0                                               | ART_GV_SAT<br>23.1                                                                      | ART_SAT_SP                                                   |             | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RM911_RT                                                     |                                                              |                                                                                                                                                                                                                             | RM911_SAT                                                                                                                                    |                 | 1           |
| 10:57/05/18<br>10:27/05/18<br>09:27/05/18<br>09:27/05/18<br>08:27/05/18<br>08:27/05/18<br>07:27/05/18<br>06:27/05/18<br>05:27/05/18<br>05:27/05/18<br>04:27/05/18<br>04:27/05/18<br>03:27/05/18<br>02:27/05/18                             | 234<br>234<br>234<br>234<br>234<br>234<br>234<br>234<br>234<br>234 | 210<br>210<br>21.0<br>21.0<br>21.0<br>21.0<br>21.0<br>21.0<br>21 | 230<br>231<br>232<br>233<br>234<br>234<br>232<br>233<br>234<br>234<br>232<br>233<br>233 | 13.0<br>13.0<br>13.0<br>13.0<br>13.0<br>13.0<br>13.0<br>13.0 |             | 19.39/03/27<br>19.09/03/27<br>18.39/03/27<br>18.39/03/27<br>17.39/03/27<br>16.39/03/27<br>16.39/03/27<br>16.39/03/27<br>15.39/03/27<br>14.39/03/27<br>14.39/03/27<br>13.39/03/27<br>13.39/03/27<br>12.39/03/27<br>12.39/03/27<br>13.39/03/27<br>13.39/03/27<br>13.39/03/27<br>13.39/03/27<br>13.39/03/27<br>13.39/03/27<br>14.39/03/27<br>14.39/03/27<br>14.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39/03/27<br>15.39 | 17.7<br>17.7<br>17.7<br>17.7<br>17.7<br>17.7<br>17.7<br>17.7 | 18.0<br>18.0<br>18.0<br>18.0<br>18.0<br>18.0<br>18.0<br>18.0 | 100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0                                                                                | 24.2<br>24.2<br>24.4<br>24.3<br>24.4<br>24.5<br>24.5<br>24.5<br>24.5<br>24.6<br>24.7<br>24.6<br>24.4<br>24.4<br>24.4<br>24.4<br>24.8<br>24.3 |                 |             |

Figure 24: Failed room temperature and SAT sensors for RM201, 202, 203, 116, ART ROOM, 911

The RM911 room temperature sensor is stuck at 17.7°C which is lower than NSB SP (19°C). During the investigation period, the low RM911 room temperature was observed to trigger HV2A to run during unoccupied times.

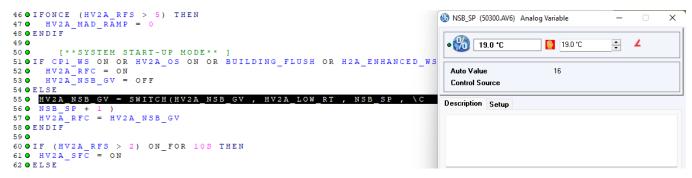



Figure 25: HV2A night setback logic

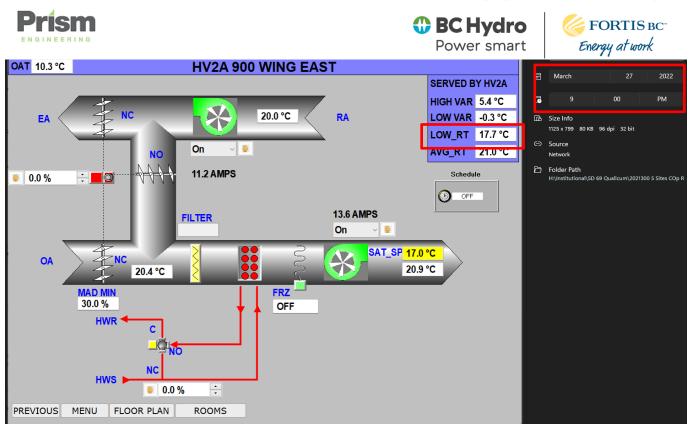


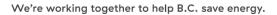

Figure 26: HV2A operating outside scheduled hours

#### 5.8.2 Measure Description

Replace the problem temperature sensors.

#### 5.8.3 Measure Implementation Update

[Provide confirmation details AFTER the measure is implemented and verified]


# 6.0 Measures to be considered for Future Implementation

This section provides an overview of each measure (that was identified but **was not selected** as part of this C. Op. project, but maybe considered for future implementation), recommendations for implementation, and the most suitable method for providing evidence of implementation. See Appendix A - Investigation Phase Summary Table for more details.

## 6.1 Measure 9: Reversible heat pumps for existing DX coils

Approximately 35% of the school has mechanical cooling from DX coils in air handlers and supply ducts.

When these DX systems reach end-of-life, they can be upgraded to reversible heat pumps of similar capacity. This will enable them to provide 1<sup>st</sup> stage heating, supplemented by heating coils like the existing ones. Our high-level estimate is that new replacement units would cover all the heating needs for areas served by these air handlers.





BC Hydro Power smart



#### Table 9: Existing DX systems

| Tag             | Size                         | Age          | Description                                                                                                                                                                   | Replacement                                       |
|-----------------|------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| HV2             | 23 Ton<br>9500 cfm           | Pre-<br>1996 | Packaged roof-top unit (Lennox DMS4-<br>275HW) with DX coil and hydronic<br>heating coil                                                                                      | Similar sized unit with reversible heat pump      |
| HV4             | 6 Ton<br>2000 cfm            | 2001         | Packaged roof-top unit (Trane TFD075) with DX coil, hydronic heating coil                                                                                                     | Similar sized unit with reversible heat pump      |
| HV8AC8          | 28 Ton<br>10,000 cfm         | 1991         | Air handler (Engineered Air FWA-285-<br>C). Air inlet and outlets, condensing<br>coils and fans are in a small courtyard.<br>The rest of the unit is in a mechanical<br>room. | Similar sized unit with external condensing unit. |
| HV11A           | 12 Ton<br>2,400 cfm          |              | Packaged roof-top unit with DX coil and hydronic heating coil                                                                                                                 | Similar sized unit with reversible heat pump      |
| CU-1 to<br>CU-4 | 4 Ton<br>condensing<br>units | 2001         | Rooftop condensing units (Trane<br>TTA048) with indoor coils in supply air<br>ducts leading to four classrooms in 900<br>block.                                               | Similar sized reversible units                    |



Figure 27: HV2 and HV4 rooftop units with DX cooling



BC Hydro Power smart





Figure 28: HV11A rooftop unit with DX cooling

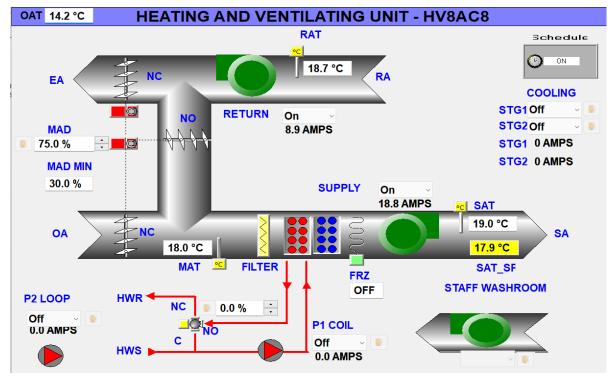



Figure 29: HV8AC8 in the DDC. The unit has two stages of cooling.

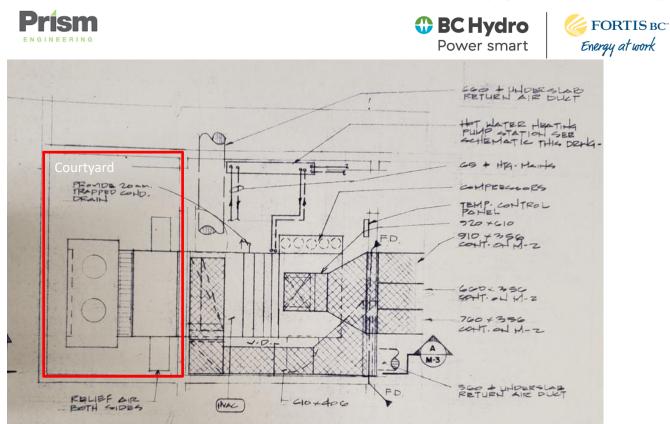



Figure 30: Drawing of HV8AC8. The main unit is inside Mechanical Room 110. The condensing unit is outside in a small courtyard area

Four 4-ton split systems provide cooling to classrooms 901, 903, 912, and 913 using dx coils in the ducts from HV2A and HV3A.

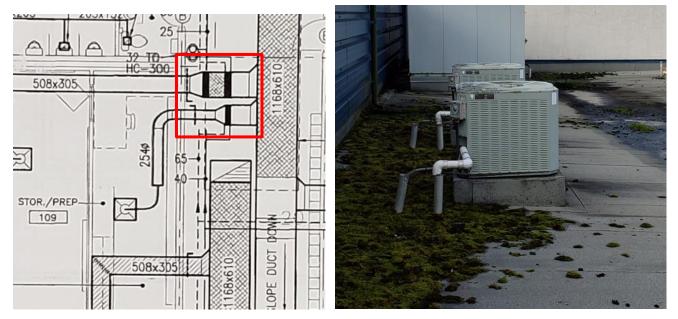



Figure 31: DX coils and outdoor units provide cooling to four rooms in the 900 Block.







CU-1 to CU-4 (Figure 31Figure 31: DX coils and outdoor units provide cooling to four rooms in the 900 Block.) would be relatively simple swaps with equivalent reversible units.

Estimated measure costs include all work required to replace each existing cooling system with a reversible heat pump. The base case cost (replacing the equipment like-for-like) may be similar. The ASHRAE life expectancy for air cooled condensers is 20 years, so these units should need to be replaced in 5 to 10 years.

A feasibility study is recommended as the next step to assessing the viability of this project. Mechanical and structural assessments are required to refine the cost and viability of the project.

The study can be expanded to consider the feasibility of adding DX coils to other air handlers in the school, including determining which units would provide the most cost-effective emissions reduction. One benefit of this solution is the addition of cooling to other parts of the school.

# 6.2 Measure 10: Hydronic Air Source Heat Pump

An alternative low carbon electrification strategy is to supplement the existing hydronic heating system with an air source heat pump. Commercially available air source heat pumps can heat water up to 50°C efficiently. With the current boiler control logic, the supply water would be too warm for the heat pumps to provide much heating once outdoor temperatures drop below 9.5°C. In the Qualicum climate, only 10% of heating needs occur above this temperature. In general, the system would need to operate with 50°C supply water temperatures down to 4°C outdoor temperatures to meet 50% of heating needs, and down to 0°C to meet 75% of heating needs.

We recommend testing lower supply water temperatures during the next heating season, after ensuring that all coils are performing as specified (see Measure 1: Reheat coils). Performing this test in different conditions or adding long term trending and analytics for continuous monitoring, will provide realistic data regarding the changes to the system (mainly upgrades to heating coils) that are required before heat pumps become a viable solution.

Adding heat pumps to the heating loop will only provide significant benefits if the hydronic system can be made to operate with water loop temperatures at 50°C (or less) down to freezing conditions, which covers approximately 75% of heating needs in the Qualicum climate.

# 7.0 Next Steps - Implementation Phase and Completion Phase

## 7.1 Implementation Phase

To continue in the program, the owner is responsible for implementing the selected bundle of measures that pay back in two years or less. Using the *Recommissioning Report* for implementation allows flexibility in how the selected measures are implemented. Options include: utilize in-house building staff, hire the C.Op Provider to implement or provide technical assistance, contract with outside service contractors, or any combination of the above.

# 7.2 Completion Phase

C.Op Service provider will follow up after implementation of the selected measures and **update** this *Recommissioning report and Recommissioning Workbook*.

The updated report for the implemented measures includes but not limited to: date of completion of each measure, new or improved sequences of operation, the energy savings impact of the measures, the requirements for ongoing maintenance and monitoring of the measures, and contact information for the service provider, in



BC Hydro Power smart

FORTIS BC<sup>\*</sup> Energy at work

house staff, and contractors responsible for the implementation. When feasible, verification data should include trends or functional test results, though other methods, such as copies of invoices, site visit reports, and before/after photos, may be acceptable.

The C.Op Service Provider will conduct an in-house (teleconference) session for the Applicant and the appropriate building operations personnel covering the new documentation, measures that were implemented, and requirements for ongoing maintenance and monitoring. Document the attendance of the building operations staff.

The *updated Recommissioning Workbook* and *updated Recommissioning Report* will be submitted to the owner and the program for review. See Appendix B: Completion Phase Summary Table for more details on implemented measures.



BC Hydro



# Appendix A: Investigation Phase Summary Table

| Investigation Phase Summary |                                                    |                        |                 |                | Investigation Phase    |           |            |      |                                |                         |                       |                                                |
|-----------------------------|----------------------------------------------------|------------------------|-----------------|----------------|------------------------|-----------|------------|------|--------------------------------|-------------------------|-----------------------|------------------------------------------------|
|                             |                                                    |                        |                 |                | nergy Savings          |           | Cost Savi  | ings | Financia                       | l                       | Est. GHG<br>Reduction |                                                |
| ECM #                       | Measure Title                                      | Measure History        | Include<br>cost | Demand<br>(kW) | Electrical<br>(kWh/yr) | Fuel (GJ) | Total (\$/ | /yr) | Estimated Measure<br>Cost (\$) | Simple<br>Payback (yrs) | tonnes<br>CO2e/yr     | Enter "x" if<br>DESELECT for<br>implementation |
| ECM-1                       | Reheat coils                                       | New                    | 1               | -              | -                      | 394       | \$ 4       | ,782 | \$ 14,400                      | 3.0                     | 19.7                  |                                                |
| ECM-2                       | AHU Fan controls                                   | New                    | 1               | -              | 18,896                 | 179       | \$ 4       | ,029 | \$ 800                         | 0.2                     | 9.1                   |                                                |
| ECM-3                       | Morning schedule                                   | New                    | 1               | -              | 5,606                  | 81        | \$ 1       | ,536 | \$ 600                         | 0.4                     | 4.1                   |                                                |
| ECM-4                       | Night setbacks                                     | New                    | 1               | -              | -                      | 172       | \$ 2       | ,079 | \$ 1,100                       | 0.5                     | 8.6                   |                                                |
| ECM-5                       | Holiday schedules                                  | New                    | 1               | -              | 17,730                 | 29        | \$ 2       | ,100 | \$ 400                         | 0.2                     | 1.6                   |                                                |
| ECM-6                       | Exhaust fans                                       | New                    | 1               | -              | 5,222                  | 235       | \$ 3       | ,362 | \$ 1,400                       | 0.4                     | 11.8                  |                                                |
| ECM-7                       | HV5 heating coil valve                             | New                    | 1               | -              | -                      | -         | \$         | -    | \$ 2,400                       | #DIV/0!                 | -                     |                                                |
| ECM-8                       | Temperature sensors                                | New                    | 1               | -              | -                      | -         | \$         | -    | \$ 2,200                       | #DIV/0!                 | -                     |                                                |
| ECM-9                       | Reversible heat pumps for existing DX coils        | New                    | 1               | - 50           | - 128,290              | 1,539     | \$ 6       | ,005 | \$ 373,425                     | 62.2                    | 75.4                  | х                                              |
|                             |                                                    | TOTAL (Previous, still | working):       | -              | -                      | -         | \$         | -    | n/a                            | n/a                     | -                     |                                                |
|                             | TOTAL (All potential measures for Implementation): |                        |                 |                | - 80,837               | 2,629     | \$ 23      | ,893 | \$ 396,725                     | 16.6                    | 130.2                 |                                                |
|                             |                                                    | TOTAL (Selected measu  | ures only):     | •              | 47,454                 | 1,090     | \$ 17      | ,888 | \$ 23,300                      | 1.3                     | 54.8                  |                                                |





# Appendix B: Completion Phase Summary Table

[Paste image of Completion Summary Table from the RCx Workbook AFTER Implementation]

BC Hydro Power smart



# Appendix C: Sample Training Outline

#### [Completion Report AFTER Implementation]

The Commissioning Provider (C.Op Provider) may customize the outline for the training and developing the training materials. Before preparing the training outline and materials, the C.Op Provider should assess the related level of knowledge of the building operators, to set up the training accordingly. For reference, the Program provides the following sample outline for the training:

- Background on the energy use of this particular building
  - Present Energy Utilization Index
  - Describe Operating Schedules and Owner's operating requirements
- RCx investigation process used in this building
  - o Describe the methods used to identify problems and deficiencies
  - Review the RCx Workbook
- Implementation process in this building
  - o Describe the measures that were implemented and by whom
  - Walk around the building to look at any physical changes or step through the new control sequences at the operator workstation
  - Provide as many details about implementation as necessary to describe what was done
  - Describe improved performance that these measures will create (show trends if available)
- O&M requirements
  - Describe the O&M requirements needed to keep these improvements working
  - Describe how the staff can be aware of energy efficiency opportunities and begin looking for additional savings potential

The C.Op Provider should follow the outline to prepare materials, as necessary, to hand out at the training session.

BC Hydro Power smart



# Appendix D: Training Completion Form

Project ID

**Facility Information** 

| Company<br>Name     | Building<br>Name(s) |          |
|---------------------|---------------------|----------|
| Facility<br>Address | City                | Province |

#### **Training Details**

| Location                          | Date |
|-----------------------------------|------|
| Commissioning<br>Provider/Trainer |      |

#### Materials Attached

| Agenda                           |
|----------------------------------|
| Materials used for training      |
| List of individuals who attended |

#### COMMISSIONING PROVIDER SIGNATURE

| By signing this Training Completion Form, I verify that this training took place with the listed attendees. |       |  |
|-------------------------------------------------------------------------------------------------------------|-------|--|
| Commissioning Provider (print name):                                                                        |       |  |
|                                                                                                             |       |  |
| Signature:                                                                                                  | Date: |  |

**FACSIMILE/SCANNED SIGNATURES:** Facsimile transmission of any signed original document, and the retransmission of any signed facsimile transmission, shall be the same as delivery of the original signed document. Scanned original documents transmitted to BC Hydro as an attachment via electronic mail shall be the same as delivery of the original signed document. At the request of BC Hydro, C.Op Provider shall confirm documents with a facsimile transmitted signature or a scanned signature by providing an original document.





Targeted Documentation

#### O & M Manual

| O & M Manual updated         | Describe updates below and attach copies of new or amended portions |
|------------------------------|---------------------------------------------------------------------|
| O & M Manual not updated     | Province reasons below                                              |
| Building has no O & M Manual |                                                                     |
|                              |                                                                     |
|                              |                                                                     |

#### Building Plans ("as-builts")

| Building Plans updated       | Describe below |
|------------------------------|----------------|
| Wiring diagrams updated      | Describe below |
| No plans or diagrams updated | Describe below |
|                              |                |
|                              |                |

#### **EMS Programming**

| New sequences of operation on file | Specify location of file and attach copy |
|------------------------------------|------------------------------------------|
| Printed screenshots on file        | Specify location of file and attach copy |
|                                    |                                          |
|                                    |                                          |

#### **Equipment Manuals**

| Manuals for new equipment are on file | Describe below (attach copy if applicable) |
|---------------------------------------|--------------------------------------------|
|                                       |                                            |



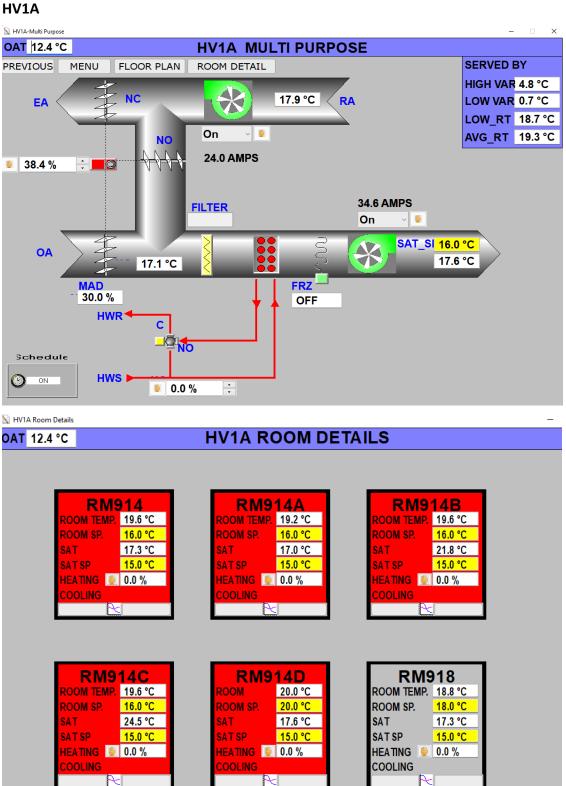


BC Hydro Power smart



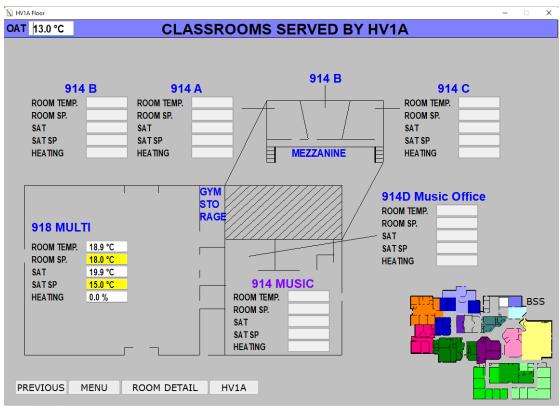
Checklist of subjects discussed at training

| Explain investigation process and how measures were identified                                                                                                          |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Describe implemented measures, and how they are reducing energy usage                                                                                                   |  |
| Building walkthrough to show implemented measures                                                                                                                       |  |
| Describe methods for monitoring and maintaining optimum system performance related to implemented measures                                                              |  |
| Describe scenarios where system setting changes would be required, and how to maintain optimum energy efficiency, e.g., seasonal-based manual adjustments to setpoints. |  |


#### List of Individuals Who Attended

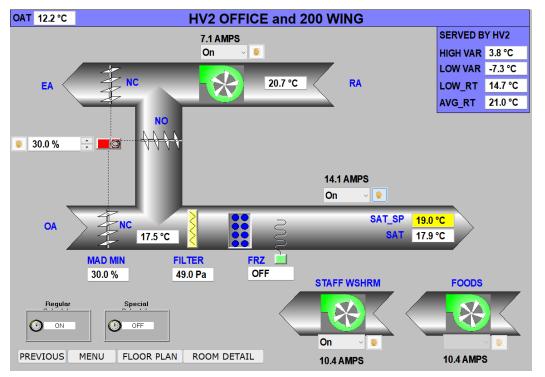
| Name | Title | Building (address or name) | Contact information (e-<br>mail and/or phone<br>number) |
|------|-------|----------------------------|---------------------------------------------------------|
|      |       |                            |                                                         |
|      |       |                            |                                                         |
|      |       |                            |                                                         |
|      |       |                            |                                                         |
|      |       |                            |                                                         |
|      |       |                            |                                                         |
|      |       |                            |                                                         |
|      |       |                            |                                                         |
|      |       |                            |                                                         |
|      |       |                            |                                                         |
|      |       |                            |                                                         |
|      |       |                            |                                                         |
|      |       |                            |                                                         |
|      |       |                            |                                                         |

BC Hydro Power smart




# Appendix E: Reheat Coils



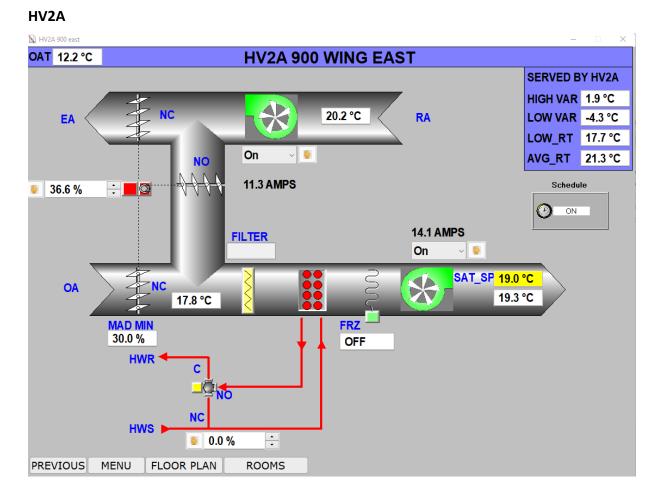

BC Hydro Power smart

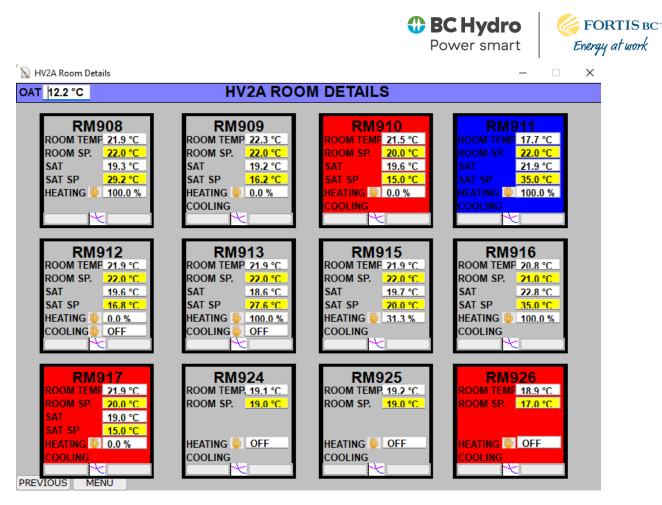




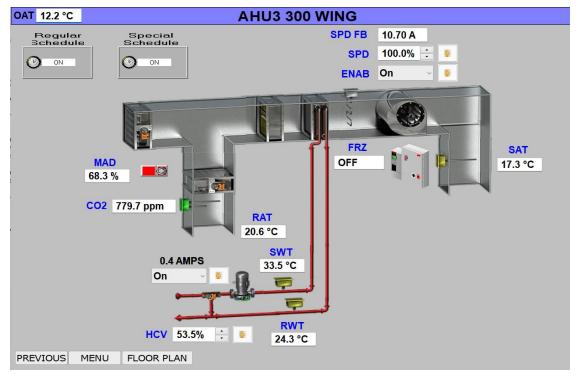
## HV2

SAT from AHU 17.9C at time of review

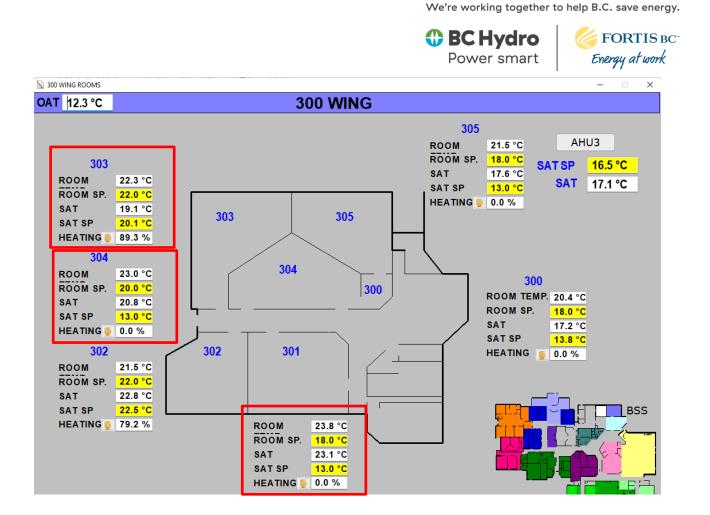




BC Hydro Power smart



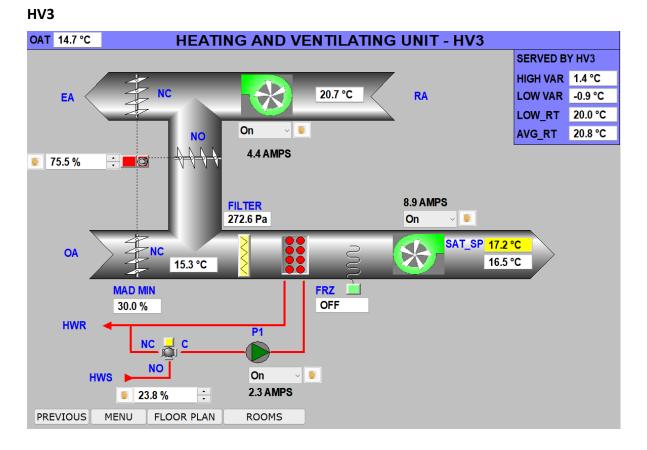

#### OAT 12.2 °C **HV2 ROOM DETAILS RM203 RM116** 14.7 °C 18.1 °C ROOM TEMP. 22.7 °C ROOM TEMP. 18.5 °C 22.0 °C 22.0 °C ROOM SP. 22.0 °C ROOM SP. 18.0 °C -17.7 °C -17.7 °C SAT 17.9 °C SAT 18.1 °C 38.0 °C 38.0 °C SAT SP 22.0 °C SAT SP 13.0 °C HEATING 🖳 50.0 % HEATING [ 🖳 50.0 % HEATING 50.0 % HEATING 50.0 % COOLING COOLING R R 4 **COPY153** V.P. PRINCIPAL ADMIN ROOM TEMP. 20.1 °C 23.0 °C ROOM TEMP. ROOM TEMP. 22.9 °C ROOM TEMP. 24.2 °C ROOM SP. 20.0 °C ROOM SP. 22.0 °C ROOM SP. ROOM SP. 22.0 °C 23.0 °C SAT 18.0 °C SAT 18.1 °C SAT SAT 18.1 °C 29.1 °C SAT SP 30.7 °C SAT SP 13.0 °C SAT SP SAT SP 18.3 °C 13.0 °C HEATING 50.0 % HEATING 50.0 % 1 HEATING 50.0 % HEATING 50.0 % 5 COOLING COOLING COOLING **ART ROOM RM145 RM147** ROOM TEMP. 23.8 °C 20.0 °C ROOM TEMP. 23.4 °C ROOM SP. 20.0 °C 22.0 °C ROOM SP. 21.0 °C SAT 18.4 °C 27.9 °C SAT 22.7 °C SAT SP 15.0 °C 35.0 °C SAT SP 13.0 °C HEATING 🖳 0.0 % HEATING 🔮 50.0 % IEATING 🕛 100.0 % OOLING R R $\mathcal{H}$ OAT 13.2 °C CLASSROOMS SERVED BY HV2 HV2 V Prin RM 153 V. P. 203 ROOM TEMP 20.5 °C ROOM TEMP 21.5 °C SAT\_SP 19.0 °C ROOM 22.7 °C ROOM ROOM SP. ROOM SP. 22.0 °C 20.0 °C 22.0 °C SAT 19.7 °C ŜĀT SAT 20.0 °C SAT 20.6 °C SAT SP 13.0 °C SAT SP 13.0 °C SAT SP 13.0 °C HEATING HEATING HEATING 50.0 % 50.0 % **STORAGE 145** 50.0 % VPrin 153 116 V. P. 20.0 °C COPY 145 18.5 °C 18.0 °C 20.0 °C ROOM 203 21.9 °C ROOM ŜĀT 116 SAT SP 13.0 °C 23.0 °C HEATING 50.0 % 21.1 °C 202 CLASS CLASSROOM ADMIN ROOM 18.1 °C **R00M** 202 22.0 °C ROOM STAFF 22.0 °C 201 ŜĀT ROOM RINCIPAL 17.7 °C SAT SP 13.0 °C 147 HEATING 50.0 % 201 14.7 °C 22.0 °C -17.7 °( ROOM ROOM 19.6 °C BSS ROOM ROOM 22.0 °C ŜĀT ŜĀT 19.3 °C SAT SP SAT SP 38.0 °C 38.0 °C HEATING HEATING 50.0 % 50.0 % FLOOR PLAN PREVIOUS MENU ROOM DETAIL HV2

BC Hydro Power smart FORTIS BC<sup>\*</sup>
Energy at work






### AHU3




**Recommissioning Report** 

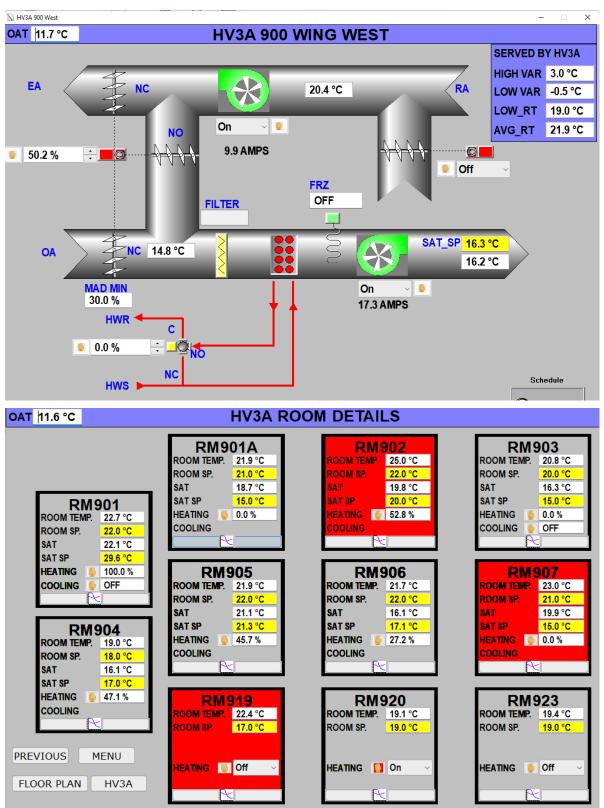


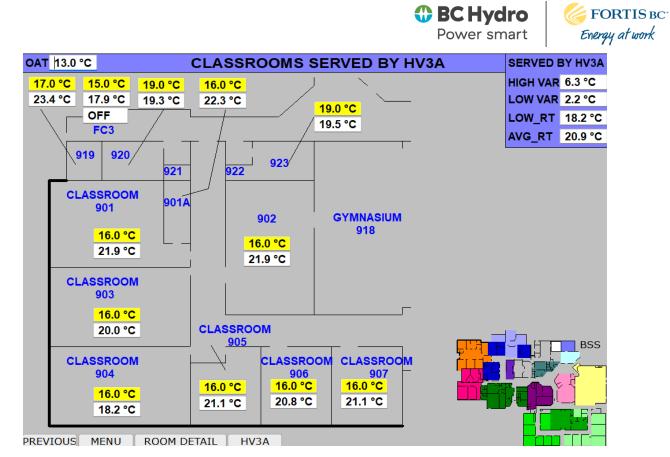
BC Hydro Power smart



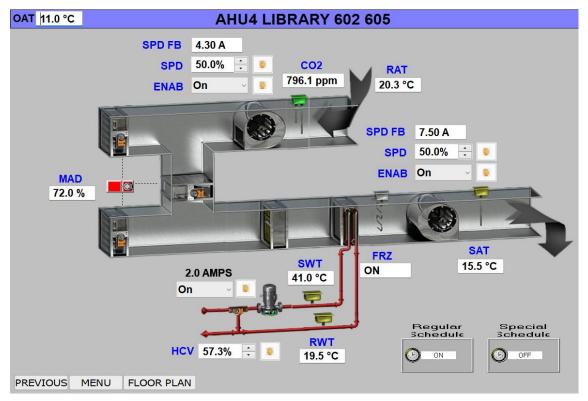








| HYSIC602<br>M TEMP: 21.9 °C<br>M SP. 23.0 °C<br>23.5 °C<br>SP 33.0 °C<br>ING 50.0 % | LAB 603<br>ROOM TEMP. 20.4 °C<br>ROOM SP. 19.0 °C<br>SAT 16.7 °C<br>SAT SP 13.0 °C<br>HEATING 50.0 %<br>COOLING                                 | LAB OFF.603<br>ROOM TEMP. 20.0 °C<br>ROOM SP. 19.0 °C<br>SAT 17.0 °C<br>SAT 9 13.0 °C<br>HEATING 50.0 %<br>COOLING                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OCKERS<br>M TEMP, 20.7 °C<br>M SP. 18.0 °C<br>16.7 °C<br>SP 13.0 °C<br>ING ₩ 50.0 % | LAB 604<br>ROOM TEMP. 21.1 °C<br>ROOM SP. 21.0 °C<br>SAT 24.1 °C<br>SAT SP 30.1 °C<br>HEATING 0 50.0 %<br>COOLING                               | CHEM STO.         ROOM TEMP 20.4 °C         ROOM SP.       19.0 °C         SAT       17.2 °C         SAT SP       13.0 °C         HEATING        50.0 %         COOLING       10.0 °C                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                     | M SP. 23.0 °C<br>23.5 °C<br>SP 33.0 °C<br>ING 50.0 %<br>ING<br>OCKERS<br>M TEMP 20.7 °C<br>M SP. 18.0 °C<br>16.7 °C<br>SP 13.0 °C<br>ING 50.0 % | M SP.       23.0 °C         23.5 °C       SAT         SP       33.0 °C         ING       50.0 %         ING       50.0 %         ING       50.0 %         OCKERS       K         M TEMP, 20.7 °C       K         M SP.       18.0 °C         16.7 °C       SAT         SP       13.0 °C         M SP.       18.0 °C         16.7 °C       SAT         SP       13.0 °C         ING       50.0 %         ING       50.0 %         ING       50.0 % | M SP.       23.0 °C         23.5 °C       SAT         SP       33.0 °C         ING       50.0 %         ING       50.0 %         ING       COOLING         COOLING       COOLING         COOLING       COOLING         M TEMP. 20.7 °C       ROOM SP.         M SP.       18.0 °C         16.7 °C       SAT         SP       13.0 °C         ING       50.0 %         COOLING       COOLING         COOLING       COOLING         COOLING       COOLING         SP       18.0 °C         ISP       13.0 °C         ING       50.0 %         ING       50.0 %         ING       50.0 %         COOLING       SAT SP         ING       50.0 %         ING       50.0 %         COOLING       COOLING |

BC Hydro Power smart




#### HV3A





#### AHU4



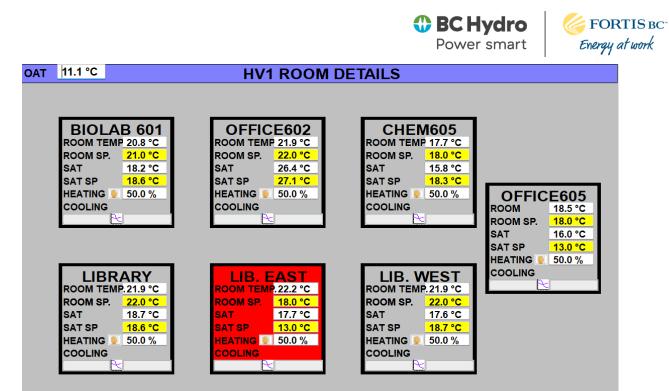
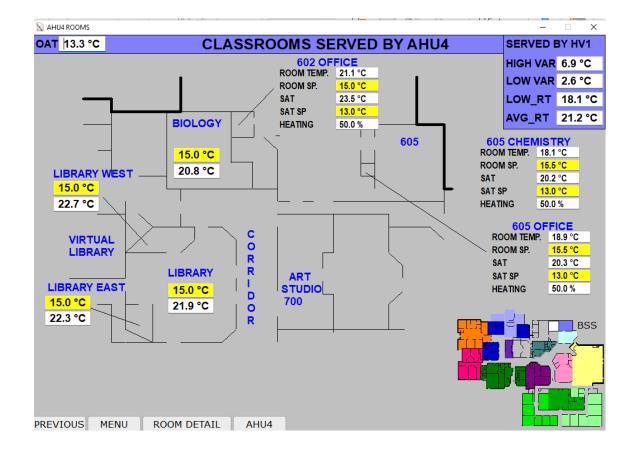
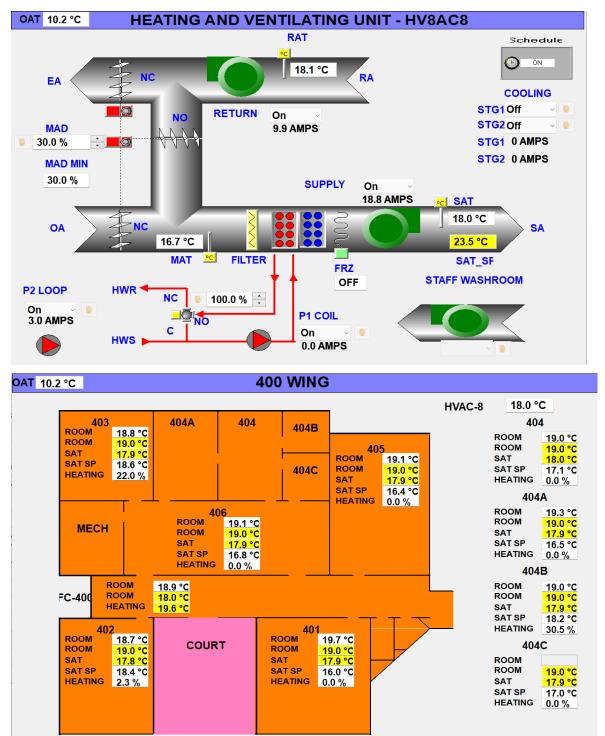
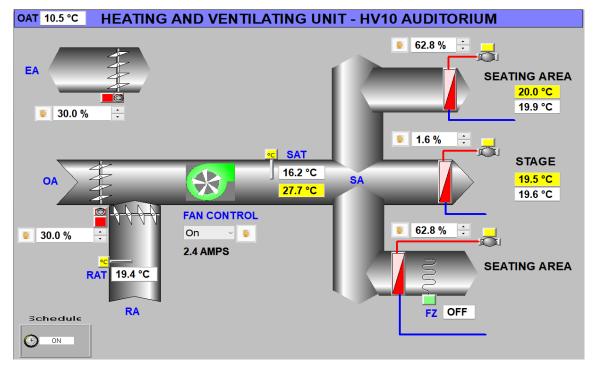




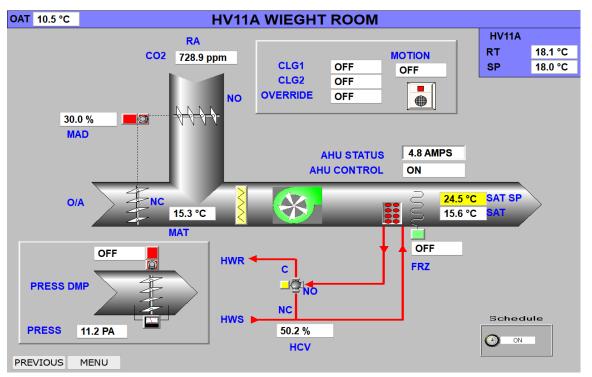

Figure 32: AHU4 room details (note the title is wrong)



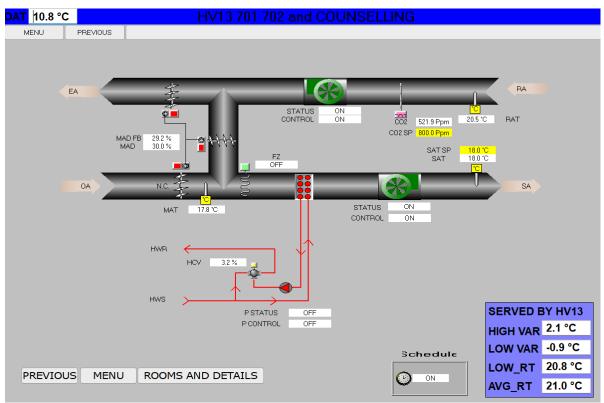
BC Hydro Power smart







BC Hydro **FORTIS** BC<sup>\*\*</sup> Power smart Energy at work **400 WING** OAT 10.1 °C 17.0 °C HVAC-8 403 ROOM 404A 404 404 404B 19.8 °C 19.0 °C 21.3 °C 19.5 °C 19.0 °C ROOM ROOM ROOM 405 SAT ROOM 19.9 °C SAT 20.1 °C SAT SP 21.3 °C 19.6 °C 404C ROOM 19.0 °C SAT SP HEATING 55.2 % SAT 17.3 °C HEATING 15.1 % 
 SAT SP
 17.3 °C

 HEATING
 31.7 %
 404A 406 ROOM 19.6 °C 19.7 °C 19.0 °C 19.0 °C 19.8 °C ROOM ROOM MECH ROOM SAT SAT 19.4 °C SAT SP 19.6 °C SAT SP 18.8 °C HEATING 36.5 % HEATING 40.6 % 404B 19.4 °C 19.0 °C 20.7 °C 20.3 °C ROOM 19.2 °C 18.0 °C 19.9 °C ROOM ROOM ROOM FC-400 HEATING SAT SAT SP HEATING 36.2 % 401 402 ROOM ROOM 19.5 °C 19.6 °C COURT 404C ROOM 19.0 °C 16.8 °C 19.0 °C ROOM ROOM ROOM SAT 19.2 °C SAT 19.0 °C 21.5 °C SAT SP 19.7 °C SAT SP 16.1 °C HEATING 0.0 % HEATING 46.5 % SAT SAT SP 21.1 °C HEATING 32.5 % PREVIOUS MENU HV8AC8

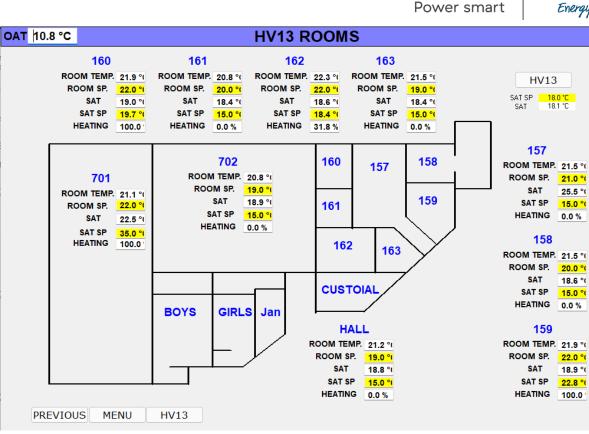

#### HV10



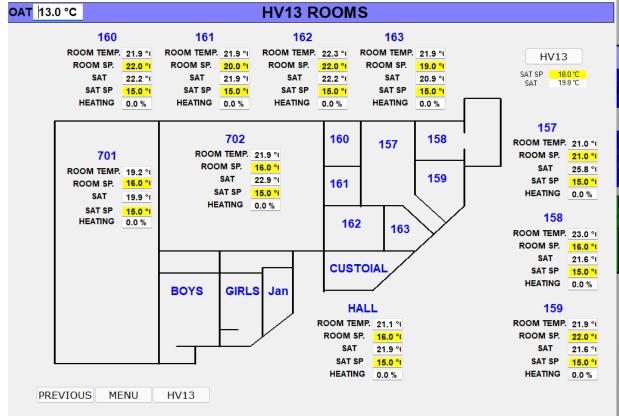
BC Hydro Power smart FORTIS BC<sup>-</sup> Energy at work



# HV13




HV11A


**Recommissioning Report** 

**BC Hydro** 

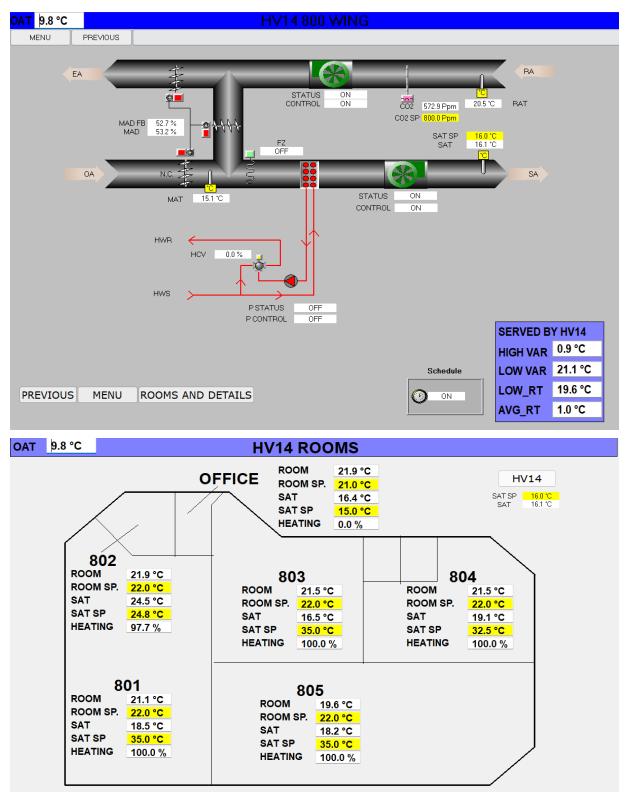
FORTIS BC



N HV13 ROOMS



**Recommissioning Report** 


Page 53 of 55

\_

×







HV14

BC Hydro Power smart



# **Boilers (unoccupied)**

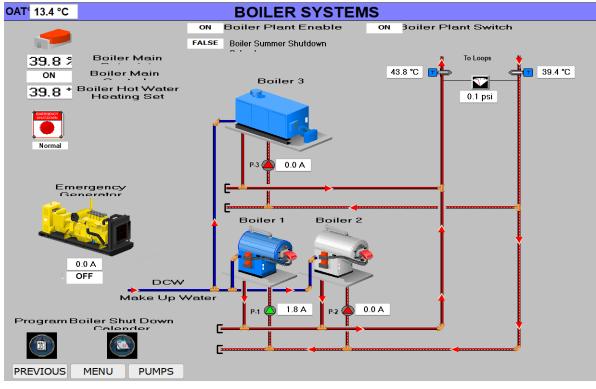



Figure 33: Boiler loop losing over 4°C even with all AHUs off

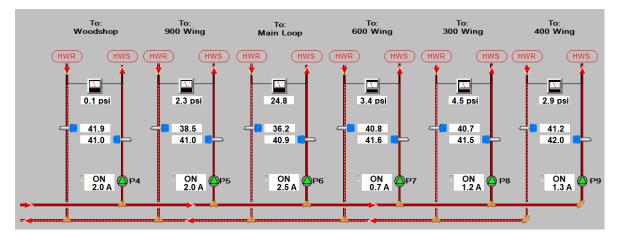



Figure 34: Biggest temperature drop is in the main loop